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By introducing an N0 scattering resonance, the Vd, N00 sector of the Lee mode] provides a calculable 
model for reaction processes leading to a three-particle final state where two overlapping resonances can 
occur. The Vd scattering and reaction cross sections calculated are found to be free of any bump in the energy 
range corresponding to overlap of the two final NO resonances. The Vd scattering amplitude is analytically 
continued to higher Riemann sheets, and the singularity analogous to that conjectured by Peierls to be 
the cause of higher resonances in the pion-nucleon system has been shown to lie on a Riemann sheet far 
from the physical domain. These results cast considerable doubt on the validity of this proposed mechanism 
for the production of higher resonances. 

1. INTRODUCTION 

IN the study of the reactions of the strongly interact
ing particles, we find that most of the cross sections 

are dominated by bumps in definite angular momentum 
and parity states. This dominance of the cross sections 
by isolated resonances is in itself a considerable simplifi
cation of the most general situation, as it allows us to 
describe the situations by a finite number of parameters. 
The number of parameters can be further reduced if 
some of these resonances conspire to produce some of 
the others. This hope has motivated several authors1,2 

to propose models for the second pion-nucleon res
onance. One of these, due to Peierls,1 is the subject 
matter of this communication. Peierls has made an 
attempt to explain the higher pion-nucleon resonance 
as a dynamical consequence of the lowest pion-nucleon 
resonance, the well-known (3,3) isobar. His model 
consists of taking the isobar seriously as a particle; 
thus, he can consider the amplitude of the pion-isobar 
scattering as an amplitude relevant in the final-state 
scattering effect in the process TTN—^TTTTN. He then 
looks for the singularities of the irN*—TrN* amplitude 
[iV* denotes the (3,3) resonance] and finds that the 
Born approximation singularity in the crossed-channel 
falls in the region of the physical energies, and numer
ically is in the correct position to be considered as a 
likely candidate for the second pion-nucleon resonance. 
This singularity is necessarily below the pion-isobar 
threshold in the case of the isobar being stable. The 
question now arises whether this singularity (of the 
phantom 7riV* amplitude) will show up in any physical 
amplitude or not. At this juncture Peierls conjectures 
that it shows up in all the coupled channels. Tuan3 

follows up this lead and predicts a number of bumps in 
the KN channel based on taking F* (xA resonance) as 
the causative agent. 
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We can visualize the content of the Peierls mechanism 
in a straightforward fashion by looking at the Dalitz 
plot of the Nirw state. Certainly there is an enhance
ment of the reaction along the bands where one or the 
other of the Nw pairs is in resonance. When the total 
energy is equal to twice the energy of the resonance, 
then these two bands will cross in the physical region 
of the Dalitz plot, and it is unlikely that this crossing 
region, which is necessarily small, can dominate the 
total cross section. What is required for the Peierls 
mechanism to be applicable is a general enhancement of 
the reaction over the whole of the Dalitz plot. This 
fact has already been emphasized by Tuan. There is 
no physically obvious way in which such an enhance
ment can be conceived. We find it worth while to 
re-examine the model taking unitarity into account. 
Goebel4 has looked into the problems associated with 
treating the unstable particles on the same footing as 
the stable ones in this particular context, and has come 
to the conclusion that the particular singularity con
sidered by Peierls is present in the irN—irN amplitude 
at the same energy; however, it is not on the second 
sheet, but on a higher Riemann sheet of the energy 
plane. 

In this paper, we try to carry the Peierls mechanism 
a step forward by calculating the effect of unitarity 
exactly for a particular model. I t should be noticed that 
the pion-isobar system is, in fact, a 3-particle system, 
and, hence, any attempt to introduce unitarity is 
thwarted by the complication of the complete five-
point functions. We simplify the problem to the barest 
essentials by eliminating all the extraneous states and 
all the momentum transfer variables. This we achieve 
by working in a generalized Lee model.5 The model used 
describes the interaction of three static fermions V, 
Vi, and N with a light boson 6 via the interaction 
V —> N+6 and V\ —> N+6. All the particles are assumed 
to have no antiparticles; also all the interactions are 
assumed to be in s states. The physical situation 
discussed by Peierls is then simulated in essence by 
considering Vi as unstable. The particles V and N in 
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the model correspond to the nucleon and the Vi corre
sponds to the isobar. Graphs typical of the Peierls 
model are present in the Vd scattering. Thus, important 
inferences can be drawn from an exact solution of 
the Vd scattering. Such a solution has already been 
obtained by Amado6 in the usual Lee model, and shown 
to be unitary. We have carried out a numerical calcula
tion using a modification of Amado's solution, modified 
to take into account an unstable Vi particle. The 
calculations were carried out for a wide range of 
parameters. No bumps were found either in the elastic 
or the inelastic Vd cross sections. The Vd scattering 
amplitude was analytically continued as a function of 
the total energy variable, across the three-particle 
branch cut, and a complex cut in the second sheet; 
a singularity was found near the position conjuctured 
by Peierls but on a sheet far removed from the physical 
sheet. In Sec. 3 of this paper, an attempt is made to 
correlate the singularities discussed in Sec. 2 with those 
of a model in which both the V particles are stable. 

2. FO SCATTERING IN THE GENERALIZED 
LEE MODEL 

The particular generalization of the Lee model5 with 
which we are concerned has two V particles, instead of 
one as in the usual Lee model.7 When both the V 
particles are stable, we can easily write down the 
Hamiltonian of the system and solve the appropriate 
Schrodinger equations to obtain the wave functions of 
the physical V states. Also the model can be described 
in a completely renormalized form. In the present case, 
where we want to deal with the situation when one of 
the V particles is in the Nd continuum, the renormaliza-
tion program can not be carried out explicitly; therefore, 
we find it profitable to describe the unstable V particle 
in terms of (C.D.D.)8 pole parameters instead of the 
usual mass and coupling constant. In the case under 
consideration, the stable | V) state and the | Nd+) 
scattering states themselves form a complete set of 
states spanning this particular sector of the Lee model. 
(The states in the Lee model split up into these sectors 
due to the stringent selection rules imposed by the 
absence of antiparticles and the restricted interaction 
F«=*iV+0. Thus, there are only two types of states in 
each sector, e.g., V and Nd, Vd and NOB, etc. This 
splitting up of the states into finite sectors is one of the 
reasons which make the Lee model soluble.) When we 
introduce these states in the decomposition of the 
scattering amplitude for the NO system, we get the 
following dispersion relation 

Jf(a,)= + 
CO 7T 7' 

K J u 

'JfeVfaOlMfaOlW 
4 T T ( O / - -ie) 

(2.1) 

6 R. D. Amado, Phys. Rev. 122, 696 (1961). 
7 T. D. Lee, Phys. Rev. 95, 1329 (1954). M. L. Goldberger and 

S. B. Treimann, ibid. 113, 1663 (1959). 
8 L . Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 

453 (1956). 

where u2(u>) is the cutoff function introduced to obtain 
convergence in the integrals. The mass of the V particle 
has been chosen equal to that of the N particle, and for 
convenience the zero of energy is also chosen to be the 
mass of the N particle.9 The mass of the 6 particle is 
taken to be n and it obeys a relativistic energy momen
tum relation. The equation obtained for Jkf(co) is a 
Low-type equation which has a solution 

Af(co)=-

where 

and 

co l-/3(w) 

1-/3 ( « ) = H co 
4 T T 2 

J &V(co')Jco' 

a/2 (a/ — o) — ie) 

^ = ( a ) 2 _ M 2 ) l / 2 > 

(2.2) 

(2.3) 

(2.4) 

The integral equation (2.1) only defines the residue 
of the function M(u>) at the pole at co = 0 and the 
discontinuity across the cut from co=/z to co= oo. This 
information is insufficient t o define the function M(u) 
completely, and gives one the freedom to modify the 
function 1—0(co) by adding a number of C.D.D.8 poles. 
In our case, we modify the function by adding — Aa>/ 
(co—coo), where A and co0 are real constants. 

l-/3(co) = l + -
4TT2 

* V ( c o ' ) & o ' 

co/2(co'—co—ie) co—coo 
(2.5) 

The parameters have to be so restricted that 1—0 (/x) > 0. 
In that case, 1—/3(co) does not have any zeros in the 
cut co plane. There are, however, zeros in the I I sheet 
which for sufficiently large co lie at complex conjugate 
points m and tri*. This is precisely the form of the Nd 
amplitude in the presence of two V particles as obtained 
by the Hamiltonian method when one of the V particles 
is unstable. When co0 is varied so as to violate the 
condition 1—0(ju)>O an extra pole is obtained in i f (co) 
and we get the Nd scattering amplitude applicable to the 
Lee model with two stable V particles. With these 
comments on the Nd scattering, we turn our attention 
to the Vd scattering. 

- v - ^ T 

V N 

-v-^4 

— ^ p < ^ — 

(a) 

iW=hr 

FIG. 1. (a) Disper
sion graph for V-6 
s c a t t e r i n g cor re 
sponding to the divi
sion of the amplitude 
given in Eq. (2.6). 
(b) Dispersion graph 
for Fipi',0}) as di
vided in Eq. (2.7). 
To each of the graphs 
there corresponds 
one more with 0 par
ticles interchanged. 

(b) 
9 The assumption of mv"=mn is in no way restrictive, and the 

case myj^mn has been carried through. 
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Amado has solved the problem of VB scattering in the 
standard Lee model exactly using dispersion theoretic 
methods. His method consists in solving the following 
equations, obtained by introducing intermediate states 
as shown in Fig. 1: 

2 » = — / W , (2.6) 
4TT27M a/ 

and 

/?(„',«) = 5 k ) k / + _ r ( c o ) ( \ 
u2(u) 20, W u'—u—ie/ 

1 r^hu2^) 
+ - / M(pi)F(<aho) 

IT J p 47T 

xf r+ r W (2.7) 
\COI+G/—-CO—ie coi-—co'-He/ 

where 

K(.o>)=t(2o>ny>/u(u)jo\f(o)\Nel+), 
r ( « ) = II(2«0)w/«(w)]<F|i(0)|7tfB+>, 

i ? ( « » = C(a!co')1/2/(«(co)«(co'))](^w'+1 j (0) |2W,+>, 
(2.9) 

and 
f{t)=-i[_d/dt]+v{t\ 

i ( /) = [ (2coO) 1 / 2 / ^ (co) ]^ - i -+co^(0 . (2.10) 

ypv and «& are destruction operators for V and 0 
particles, respectively, and 0 is the quantization volume. 
Equation (2.7) is an Omnes10-type integral equation in 
the variable w, and can be easily solved. The polynomial-
type ambiguity is absent in this case because of the 
convergence required in (2.6). The result obtained after 
these maniupulations is given by Amado which we quote 

^(co)=-[g 2 / co] / [ l -^(co)-2 /{ l+co.C(co)}] , (2.11) 

where 

1 rlmri-0(oo')l 1 /3(u-co') do>' 
C(«) = - / — . (2.12) 

vJp | l - / 3 ( a / ) | 2 a / l - /3(co-a / )co ' -co 

These results are directly applicable to our model also. 
As the stable V state and the NB scattering states are in 
themselves complete,11 the derivation of the integral 
equations is not affected by our modification. Also as 
only renormalized quantities are involved in (2.6) and 
(2.7), the solution is also unaffected by out modification. 
The effect of the modification is only felt via the func
tion 1—/3(co) appearing in (2.11) and (2.12). 

10 R. Omnes, Nuovo Cimento 8, 316 (1958). 
11 The author believes that this statement can be proved along 

the lines of reference 12. 

Numerical Evaluation of the FO 
Cross Section 

We note that the integral (2.12) defining C(co) does 
not have a singular integrand; although (a/—co) does 
vanish at co = a/, the numerator /3(co—<*>')? also vanishes 
at this point. Thus, the real and imaginary part of 
C(co) can be evaluated without any difficulty. For a 
simple cutoff function u2(a))==co0

2/[w2—co0
2] the function 

1— J3(OJ) can be evaluated in terms of elementary 
functions. The VB cross section can then be determined 
using 

e«™<«> sm8V6(a)) = ku2(a>)T(a>)/4>ir, (2.13) 

<7tot=Imr(a>)/&, (2.14) 

oreia.= | r («) |V4ir . (2.15) 

The results that we obtain in the Lee model would be 
physically sensible only if they are insensitive to the 
cutoff function. Thus, the parameters have to be chosen 
in a restricted range of values, so that the energies 
above the cutoff do not play an important role in any 
integral. I t so happens that the real part of the function 
1—j3(w) has a minimum at some energy above the cutoff 
energy, and gives some unwanted bumps in the N6 
cross sections if the V-Nd coupling constant is made 
very large. This fact also gives a large contribution to 
the function C(w). In the numerical evaluation of C(a>), 
we restrict the parameters such that energies much 
higher than the cutoff had a small effect. This range of 
parameters is slightly more restrictive than that required 
for the elimination of the ghost V states. This still 
leaves a large scope of variations; especially the 
resonance in the Nd channel can be made as narrow as 
we like. In the results which are presented here the 
parameters were chosen so as to make NB resonance 
appear like the 33 isobar. The mass of the resonance 
~l/x, the width ~ 0 . 5 M , the C.D.D. zero was chosen at 
the threshold so that the NB cross section behaved like 
a ^-wave cross section. This, however, restricted our 
choice of V-NB coupling constant to comparatively 
low values, g2/Air=0.3. Figure 2(a) shows the NB cross 
section that was used and Fig. 2(b) shows the VB elastic 
and inelastic cross sections. We note the absence of 
any resonance of the type suggested by Peierls. Results 
of calculations with a side range of parameters confirm 
the above conclusion. 

Analytic Properties of C(w) 

The function C(co), defined by the integral representa
tion (2.12), has a logarithmic branch point at 2/u. The 
character of the function at this singularity can be 
easily studied by studying its imaginary part for 
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FIG. 2. (a) The NO cross section 
which is used to calculate the V0 
cross section in Fig. 2(b). The param
eters are g2/47r=0.3, ^4=0.6 and co0 
= 1.0/*, and shows resonance around 
2/z. (b) The V6 elastic and inelastic 
cross sections calculated with the N6 
cross section in Fig. 2 (a) as the 
input information. 

(a) (b) 

Imco=+0 and Re(co) slightly greater than 2/x. 

1 /-<»Im(l--/3(co')) 1 
ImC(co) = / • 

wJ, | 1 - / 3 ( C O ' ) | 2 CO' 

Im[l- /3(co-co')] &>' 
X- (2.16) 

11—/5(co—coOl2 u'-u 

as Imj8(co) = 0 for co</z, we can rewrite the above as 

1 f*>-nm(l-p(a>f)) 1 
ImC(co) = — 

| l- /?(co ') |2 co' 

I m [ l - j 8 ( w - w ' ) ] *» ' 
X-

| l - /3(c»-co') |2 » ' - « 
(2.17) 

As in the entire range of integration in (2.17) the 
argument of P(w) is near /it, we can treat every term 
except K= (a)2—M2)1'2 as a constant, thus, 

ImC( :«)=[• 
M2(M) 

. 4 T [ 1 - / S W ] 2 

1 
-(co-2M)2 

Om" 

P- • « -

i n 

O m 

(a) 

7M ft - ^ 

Cm* 

Orn 

Also 

for co>2/x. (2.18) 

FIG. 3. (a) Connec
tions between sheets I 
and II of the function 
l/[l-/3(co)]. m and w* 
are poles in the II sheet. 
(b) The figure shows the 
sheets a and b of the 
function l/[l-/3(co)], 
obtained from I and II, 
to be a clockwise rota
tion of the cut n —* oo to 
— oo —»fj.. m is a pole in 
sheet <x, and w* in b. 
—fi is a branch point in 
sheet b. 

ImC(co) = 0, for co<2/x, (2.19) 

from (2.18) and (2.19), it is obvious that the singularity 
of C(co) at w=2ju has a logarithmic character. 

C(co) = const -[ 
^ 2 (M) I 2 

4 X [ 1 - / 5 ( M ) ] 2 J 4TTM 

X(co-2M)2ln(2/z-co), (2.20) 

there is as indicated before no singularity for CO=M. 
As the analytic continuation of C(co) involves analytic 

continuations of the function 1—/3(co), we find it 
convenient at this point to discuss some of the properties 
of the latter. 

I t is apparent from the representation (2.5) that the 
function 1—/3(co) has no singularities in the cut co 
plane defined in Fig. 3(a). 

1-0(00 = 1 — 
"2 A 

>kfu2(a>')dco' 

co—co0 47r2 yM a/2(a/—co) 
(2.21) 

As co crosses the real axis above M from the upper half 
of the co plane, we have to deform the contour and the 
resulting function has the representation 

l~0 I I(co) = l-/5(co)+' 
g2 k(co)u2(co) 

2TT co 
(2.22) 

(b) 

This cut is two sheeted due to the two-sheeted nature 

FIG. 4. The figure 
defines the contour 
Ci in the co plane. 
The branch fines A, 
B, and B' are defined 
in the text. The 
branch line B is in 
the same sheet as Ci, 
while B' is obtained 
by analytic contin
uation through A. 

-cu-/x 
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2/t-

FIG. 5. The regions I-V in which C(cS) 
has different representations. 

n t 
m 

2" 

--t-

of k(u). The function in the I I sheet thus has all the 
singularities of u2(co), a pole at co = 0 and a branch point 
at w= —/x. More important, however, are the zeros of 
this expression which give rise to poles of I f (co) in the 
second sheet. For fairly large co0 these lie at complex 
conjugate points m and ra*, Fig. 3(a). Later, we have 
to rotate the cut to position — oo —> co+ju when we 
find it convenient to define sheets a and b. As indicated 
in Fig. 3(b), 1— /3a(co) has a zero at m, and 1—/36(co) 
at m*. 

Continuation of C(o>) to Higher 
Riemann Sheets 

In order to obtain the continuation of the expression 
(2.12) for C(co) to higher Riemann sheets, we rewrite it 

FIG. 6. The de
formation of contour 
G to obtain analytic 
continuation into re
gion II. The dotted 
part of the contour 
in the sheet obtained 
by analytic contin
uation through A 
(he rea f te r cal led 
sheet II). 

in the form of a contour integral 

1 r 1 
C{o3) = - / 

2wtJ a 1—£ 

dz /3(co—z) 1 

P(z) z l—/3(a)—z)z—a) 
(2.23) 

:«*). where we have used the reality property /3*(co) 
The contour C\ is defined in Fig. 4. The integrand is a 
function obtained by multiplying two functions having 
two sheeted cuts, and thus has four sheets. We call 
these cuts A for [l-jS(co)]-1 and B for /3(co-f) 

[l-0(«-r)]. 
I t should be noticed that the position of the cut B 

depends on co and when we continue the function C(co) 
as a function of co, this may cross the contour of integra
tion. In such cases we would have to deform the cut B 
and this would reveal the second-sheet singularities of 
the function 13(co). These in turn may cross the contour 

FIG. 8. Further de
formation caused by the 
second-sheet pole of 
fl-^Cw)]-1 . Notice that 
it affects the contour in 
the I I sheet only. 

°w-m 

$$rm 

iyfflamvmv&xmxKi&xz B and B7 

(ti-fj. 

of integration giving branch points in the second sheet 
of C(co). We find it convenient to define five regions 
which are numbered I through V and are connected as 
shown in Fig. 5, in which the function C(co) has different 
representations. These numbers do not denote the 
Riemann sheets of function. 

As co moves from region I to region II , the cut B 
crosses the contour in Ci, and to obtain an analytic 
continuation of C(co), we have to deform the contour as 
shown in Fig. 6. Rotating cut B, we can reach the 
configuration shown in Fig. 7. The analytic representa
tion of C11 (co) can then easily be written 

C"(*) = - L . ( -

1 dz /3 a(co-s) 1 

2wi J a 1-/3(2) z 1—0a(co—z) z—co 

± I (-J—^-L_) 
2iriJcM-P{*) l - / 3 n ( * ) / 

dz /5a(co-s) 1 
X-

z 1—f3a(oo—z) z-
(2.24) 

The deformations in the contour reveal two poles of 
the integrands; one at z= m from the term [1—/3n(s)]_ 1 

and another at s=co—m from the term [1— /3a(co—z)]_1. 
These poles cause the region of validity of C11 (co) to be 
limited, and as co goes from I I —»III, we have to 
further deform the contours, as shown in Fig. 8. As the 
contours are deformed by a pole, it is easy to write the 
contribution 

Cin(co) = Cn(co)-

X 

p 1 
m (m— 

l3a(co-

«) 

m) /3b(o)—m) 

Ll-l3a(o)-m) l- /36(co-ra) 
] , , 24a) 

where p is the residue of [1—/3n(co)]-1 at co=w, and 
may be complex. Similarly when the pole at z—u—m 
crosses G (i.e., we go from region I I I - IV) , we have to 

FIG. 7. This contour is 
obtained from that of 
Fig. 7 by rotating cut B 
clockwise. 

i c, 

t C2 

^iK^OrAVfeVritaitrA^: B and B' 
to-ft 

X m 

FIG. 9. Deforma
tion of contour Ci 
caused by pole of 
[ l _ 0 a ( w _ s ) J - l . 

r 
u-fl 
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ReQ-£(o»)] 

•Re{2/[l + wc¥(w)]} 

Re{2/[l+a)c(wD} 

FIG. 10. Figure 
showing the energy 
d e p e n d e n c e of 
R e [ l - £ ( « ) ] . and 
Re{2/[l+coC(co)]( 
in region I and V. 
It should be noticed 
that only the pole 
of T(co) near m-f-w* 
is in the region V. 
There is, however, a 
pole below a>o in 
region I. 

deform Ci Fig. 9. and we get the continuation 

p i 
CIV(co) = C m ( w ) -

m (<o—m) 

X r — — L 
iPfa—tn). 

(2.25) 

Now when co crosses real axis above 2M in region IV-V, 
we get, as Cnfa) -> CI(w) = C(co), 

/2 1 r I3afa-m) 
Cv(co) = C(co) 

m (m—co)Ll—l3afa—m) 

1 /3bfa—m) 

1-^fa-m) l-/3&(co-w) 1—/3n(co—w)J 

(2.26) 

The most important property of this function is that 
it has a pole at co=ra+w* on the real axis (but not on 
the physical sheet), due to terms involving 1—/311 (co—m) 
and 1—fibfa—m). In the neighborhood of this point, 
we can represent Cv(co) by 

C v (co)=-2-
/ 2 p 1 

mnr oi—m—nr 
(2.27) 

The analytic continuation of Cfa) also has poles at 
other points in these sheets; for example, it has a pole 
in region I I I at co = 2w, where /3afa—m)/[l —f3afa—m)~\ 
becomes infinite. Also left-hand singularities of 
1—Pufa—m) contribute cuts at m—/x and there are 
poles far away due to u2fa), but none of these is very 
close to the overlap energy co=m+ra*. 

Analytic behavior of Tfa). Tfa) is a function which is 
simply formed out of 1— Ŝ(co) and C(co) Eq. (2.4), and 
has the cuts of both the functions. The analytic con
tinuation of Tfa) to region V can be thus obtained 
simply by replacing Cfa) by Cv(co), 1—/3(co) is unaf

fected as the path from region I-V takes it to the I I 
sheet and back again to the I sheet. 

T V ( C O ) = _ : 
co l - / 3 ( c o ) - 2 / [ l + c o - C v ( c o ) ] 

(2.28) 

If we approximate Cv(co) by its pole term at m+m*, it 
is easy to see (Fig. 10) that it causes the real part of the 
denominator in Tv(co) to vanish at an energy lower 
than (m+m*). As the residue at the pole of Cv(co) is 
negative, and the imaginary part of l—pfa) is positive, 
the pole of rv(co) would lie below the real axis. If the 
residue p is very small, it is easy to see that this 
energy is very close to the energy co = m+w*. 

Thus, it appears that the pole conjectured by Peierls 
and by Tuan is present in the VB scattering amplitude, 
but is not on a nearby sheet so as to contribute any 
bump to the physical cross sections. 

3. THE MODIFIED LEE MODEL 

We consider a system of heavy fermions Vh V2, and 
N, interacting with a light boson 0.5 We choose Vi and 
N to have the same mass which we also choose as zero 
of energy. The mass of V2 is chosen as m, and that of 
6 particle as fx. All the fermions are taken as static, 
whereas 6 obeys a relativistic energy-momentum 
relation. None of the particles has antipartides, and 
the only allowed interactions are 

V^±N+d, 

V2-^±N+d. (3.1) 

First, we consider the situation in which V2 is stable, 
and study the reactions 

v1+d-^v2+e, 
and 

Vx+B-^N+O+e. (3.2) 

We denote the transition amplitudes for these reac
tions by T,n(co)r22(co) and JF(O/,CO), respectively, where 
co is the total energy and cor, the energy of one of the 6 
particles in N66 state. We also consider V$ elastic 
scattering with the amplitude Z^co). 

The functions JTH(CO), 7\2(CO) and 7*22 (co) have cuts 
beginning with ju and w+/x, which are two-sheeted, 
and a logarithmic cut beginning with 2[x arising from 
the three-particle state N66. The continuation of the 
two-particle amplitudes through the two-particle chan
nel has been discussed before13 and we simply quote this: 

c(«)= 

Tn (co) ( 1 + 2 i p 2 (co) T22 (co)) = 2ip2 (co) 7\ 2
2 (co) 

(l+2ipi(co)rii(co))(l+2^p2(co)r22(co))+4pi(co)p2(co)ri22(w) 

Tufa) 

(l+2ipifa)Tufa))(l+2ip2fa)T22fa))+4:pifa)p2fa)T12
2fa) 

&3) 

(3.4) 

12 G. Kallen and W. Pauli, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 30, No. 7 (1955). 
13 R. Oehme, Z. Physik 162, 426 (1961). 
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FIG. 11. The figure shows the 
connection between sheets I-IV 
connected along the real axis, as 
shown by vertical shading. 

where pi(co) and P2(co) are phase-space factors for the 
V16 and V2O channels 

pi(o)) = u2(o))(o)—mi—M)1/2, P2(O)) = U2(O))(O)—m2—M)1/2-

The connection between the four sheets connected at 
JJL and m+fi is shown in Fig. 11. 

In general, the function TM(W) has a short cut in the 
physical sheet arising from the Born approximation 
graph Fig. 12. This shrinks to a pole in the static model. 
I t is clear from (S.3) and (3.4) that the analytic 
continuations of Tn(ca) and Tufa) also have cuts at 
the same point, and these in our model will be poles. 
This is the singularity considered by Peierls and, hence, 
we are interested in studying its migration as V% becomes 
unstable. 

In Appendix A we have studied the migration of the 
pole in the NO scattering corresponding to V2, as it 
becomes unstable. Applying the same results to the 
movement of the Vzd branch points in the V\B scattering, 
we come to the conclusion that the branch point at 
m+fx in the physical sheet of V\B amplitude moves 
around the point 2/x as shown in Fig. 13, and takes the 
position m*+/x in the upper half of the co plane. At the 
same time, a branch point is found at m+fi in the lower 
half of the co plane reached from the physical sheet by 
crossing the real axis, between 2/x and infinity from the 
upper half-plane. This branch point should correspond 
to the second sheet pole at m in the NO scattering 
amplitude. When V2 is stable, this should be the analog 
of the pole w! in the second sheet in NO amplitude, as 
described in Appendix A. The cuts are shown in Fig. 13. 

To illustrate the migration of the Peierls singularity, 
we consider the simplest perturbation theory graph in 
which it occurs, viz., Fig. 14. The matrix element of 
the graph is proportional to 

J a 

Wu\<*')dA*' 

co ' (a /—m a ) [co ' - fa—mh)~] 
(3.5) 

which has as a function of a> a branch point at m&+M, 
and in the sheet obtained by crossing this cut there are 
poles at co=m& and o)=ma+mb. In the case where V2 

is stable, then clearly ma=mb=m, we have the well-
known singularities already described. When the 
particle V2 becomes unstable, we have to make m 
complex; however, we must have physical principles 

FIG. 12. Born approximation graph 
for r8s(«). 

Peierls Singularity 

for Stable V 2 

Peierls Singularity 
/ / for Unstable V 2 

FIG. 13. The figure shows the various singularities of V\B —> V\6 
scattering, for Vi stable, and also for F 2 unstable. When Vn is 
stable we have three cuts in the physical sheet, starting at n, 
m+n, and 2jx, the thresholds for Vi6{ V$, and N$d channels, 
respectively. There is also a branch point in the second sheet at 
ni'-j-v, where m' is the position of the second sheet pole in Nd 
scattering amplitude. There is a pole at 2m reached by path 1 from 
the physical sheet. This migrates as V2 becomes unstable to m+m* 
reached along the path 2 from the physical sheet. There is, how
ever, another pole reached by path 3, which has been discussed by 
Goebel, and also by us in Sec. 2 of this paper. This, however, 
cannot be easily connected to the case in which V% is stable, as 
long as we use perturbation theory, because the II sheet is not 
correctly described by a perturbation theory. 

to choose the correct sheets. First, we require that the 
cuts move as shown in Fig. 14, and second, that the 
outgoing particles must be in decaying states. These 
conditions give m&=w* and ma=m. The Peierls 
singularity is then at m+m* reached as shown in Fig. 13. 

4. CONCLUSION AND DISCUSSION 

We have shown by an explicit calculation in the 
Lee model that the Peierls second resonance model is 
untenable once unitarity is correctly taken into account. 
Evidently, unitarity does not couple the irN* —> wN* 
channel to the irN —* TN channel as Peierls had con-
juctured. Although the present calculations were done 
in the Lee model, and crossing symmetry, recoil, etc., 
were ignored, we believe that they cast serious doubt on 
the validity of the Peierls mechanism. Probably the 
difficulty with the Peierls model arises from the treat
ment of the unstable particles on the same footing as 
the stable ones. In this connection we would like to 
draw the attention of the reader to the material in the 
Appendix A, where it is shown that the effect of a 
particle becoming unstable can not be taken into 
account simply by replacing m by m—iy where 7 is 
positive and denotes the width of the resonance. This is 
because in most important cases, especially in the one 
under consideration, we do not want to make the 
particle stable by switching off the interaction, but by 
changing the mass conditions. This process involves an 
analytic continuation of the relevant functions as a 
function of the mass variable and in such cases the 
considerations in the Appendix A become relevant. 

FIG. 14. Graph of lowest order having V$ 
scattering in the final state, 
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Lastly, we would like to point out that the amplitude 
for V8 scattering that we have used has a puzzling 
feature that it has a C.D.D. zero at precisely the same 
position as the C.D.D. zero in the NO scattering 
amplitude. We are unable to account for this. 
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APPENDIX A 

In this Appendix we follow the position of singularity 
representing a particle, as it becomes unstable.14 In 
order to facilitate the discussion, we make the particle 
slightly unstable, and then we study the movement of 
the singularity as it becomes unstable with respect to 
the new channel. We illustrate this in the Lee model, 
which is described by the following Hamiltonian 

+ (g*r W + H . C . ) + (/^tyF/3t+H.C.), 

where 
<a=(t*+W*, w={k2+ixf2)112 

A = Y1 <*k 
k (2WT)1 '2 

v(w) 
and B = £ ft, 

k ilwr)1'2 

(Al) 

(A2) 

Q, is the quantization volume; later fi is allowed to 
become infinite. 

\pv and \pN are destruction operators for fermions 
V and N, and ak and ft are destruction operators of 
particles 8 and 8' in momentum states k.n The mass of 
8 and 8' is ju and // , respectively. The N8 scattering 
amplitude can now be simply written down 

Jf(«) = 

where 

and 

tnv°—o>—g2<l> (co) — /2<i> (co) 

fc'«2(o>')<fa>' 

4 T T 2 

k'v2(w')dwf 

1 r™ k'u2(a>')<L 

:7T2 J^ 0)f — 0) — l 

1 r 
co) = — / 

(A3) 

The physical V particle is then the pole of the 
function M(<a). This function has four sheets which 
can be numbered as shown in Fig. 15. The functions 
0(a>) and <£(co) can be continued in the higher sheets 

14 G. Hohler, Z. Physik 152, 546 (1958). 
16 The NO' channel has been introduced only to make the V 

particle unstable even when below NO threshold, so that it is 
never on the real axis. The pole can then be followed more easily. 
The coupling to the N8f channel is thus necessarily vanishingly 
small. The $boye treatment is for s waves only. 

°TTTffTrm 

FIG. 15. The figure shows the connection between the sheets 
I-IV connected along the real axis, as shown by vertical shading. 
The function M(<a) has four sheets corresponding to two sheets 
each of <£(«), and <£(co). The correspondence is as follows, 1(1,1), 
11(2,2) 111(1,2), and IV(2,1); where the two numbers in the 
paranthesis correspond to the sheets of the function <f>(u) and <&(«), 
respectively. 

very easily and we can then trace the path of the 
F-particle pole.16 We take /x'<M and /2<3Cg2, so that 
when Re mv<v there are two poles on the sheet I I I at 
complex conjugate positions. We show only the one 
reached from above the real axis, Fig. 16. There are 
also poles in the I I sheet at points nty (lower than my). 
When mv° is increased, these move as shown in Fig. 16 
my —» m and my —» m*. The pole m is in I I sheet and 
m* in IV sheet. As far as the poles W7* and w / * are 

ft^ 

fT1\j 

FIG. 16. Migration of 
the pole corresponding 
to V intermediate state 
in NO scattering as it 
becomes unstable with 
r e s p e c t t o t h e NO 
channel. 

—a m 

concerned, a similar trajectory takes them to m and 
m* in IV and I I sheets, respectively. We, thus, see that 
the poles which were close to the physical sheet are now 
on remote sheets and they are replaced by another pair, 
which was previously on remote sheets. 

In the limiting case of / 2 = 0 , the sheets I and I I I 
become identical, so do sheets I I and IV. The F-particle 
singularities stay on the real axis till they meet on the I I 
sheet and then they split apart into m and m*. 

Z 3 <t FIG. 17. Contour C2 
and Ci in o plane. 

•cf 

+ 
7 T ( C O 0 2 + M 2 ) 1 / 2 a 

16 If we take a special cutoff function u2(co) = (o>o2/w2+wo2), the 
integral can be written down in terms of elementary functions. 

0(„) = ^M [_ (0,2-̂ )1/2 l n [_ | M + (^ .^l^j / / t ] 

• (we
2+ju2)1/2 sinh-1(o>o2+M2)1/2l, 

' J 

where the sheets for the square root and logarithm functions have 
been chosen so that there is only one branch point, i.e., at o>=/*. 
This function is very simply obtained on the second sheet by 
adding the term 2iir(aP—fx2)ll2u2(co). *(o>) has also a similar 
representation. It is now a simple matter to trace the path of the 
V pole in (A2). The general nature of the trajectory is independent 
of the special choice of the cutoff function, 
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APPENDIX B 

In this Appendix we discuss an extension of Amado's 
method6 for V6 amplitude to the N66 amplitude. As this 
extension is very direct, we omit the details, and present 
only the important steps. As we are interested, in this 
paper, in the three-particle states which have res
onances in two pairs, we want to consider the F-particle 
as unstable. This, we find, leads to a solution for N66 
amplitude which has an ambiguity which can be 
resolved by introducing V as a stable particle and then 
analytically continuing to the case of unstable V. First, 
we treat the case of unstable V and point out the 
ambiguity, and then we give the form in which this 
ambiguity has been resolved. Consider the amplitude 

(2coi£2-2co2£2-2coft)1/2 

F(«,«!«,)= (NO- \ j | mtir), (B l) 
where 

u(o3i)u(co2)u(o)) 

j(t)=——( - f - + c o ) a k ( 0 , (B2) 
u(o>) \ at / 

ak(t) being the annihilation operator for the 0 particle 
in momentum state k, u(u) is the cutoff function 
introduced to cause convergence of all the relevant 
integrals, and 12 is the quantization volume later allowed 
to become infinite. The minus sign on the state indicates 
outgoing waves. This amplitude is the one which is 
required to take into account the effect of NOB state as 
the final state. 

First, we consider V in the continuum. Then the NO 
states are complete and we can obtain a dispersion 
relation for this function in the variable by contracting 
the 6 from the left in (Bl) 

F(cO,COiC02) 

(2co£2)r (2co20)1/2 

= — — htl——<N\j\N6r) 
u2{ca)L Ufa) 

(2C01O)1'2 -i (2C010)1'2 (2co2«)1 / 2 

« ( « i ) U((JOI) w(c02) 

X lim (N\ [ok(0, jlIiWi02->. (B3) 

Introducing the intermediate states \N6~) which are 
complete,9 and using 

(2COO)1'2 

M*(co) = — T T - {N\j\Nd~)y 

we get 
u(o)) 

2coQ 
F(Go,a>1a)2) = [5k1 (kM*(co2)+5k 2 ,kM*(wi)] 

w2(co) 

1 r«>k'u2(a>') 
+ ~ / —1M*(co,)ir(co>ia)2) 

IT J a 47T 

x [ r+ l̂̂ ,• 
La)'—co—ie co;—(OJI+CO2—w)+^'€J 

(B4) 

This is an Omnes10 type equation which can be 
easily solved; however, it is easy to see that the inhomo-
geneous term itself is a solution of the equation. If we 
substitute 

[2coO>2(co)]5kl,/fcM'*(co2) 

in the integral, we get 

M*MM*(f**)\ 7 r l ( B 5 ) 
Lco2—co—ie coi—co+^€J 

This is odd under the exchange 1^±2. Thus, the sum 
of this term and the term for [2coft/w2(co)]5k2,kM*(coi) 
vanishes. Thus, this inhomogeneous term, plus a 
solution of the homogeneous equation, gives the 
complete solution. We can prove that 

M (co)M* (coi+co2—co) 

is a solution of the homogeneous equation in the case 
where M (co) has no poles in the physical sheet, as 
follows: Consider the integral 

r-l-f 
>&V(coO 

Leo'—co 

M(coO|2M*(coi+co2--co') 

1 

-co'—co—ie co'— (coi+co2—oo)-\-ie. 

This can be rewritten as a contour integral, 

: > ' • 
(B6) 

/ = — f Af(o/)M*(coi+co2-co' 
2xi J Ci 

Leo'—co— 

) 

1 •V' 
iJ 

(B7) 
-ie co'— (coi+co2—oo)-\-ie. 

which can be easily integrated 

/ = :f M(co')M*(coi+co2-co') 
2ni J c2 

X [ 7+ r~L' 
Leo'—co—ie co'—(coi+co2—co)+^€J 

+2M(co)M*(coi+co2-co). (B8) 

The integral on the right-hand side of this equation is 
seen to be equal to I when we make a change in the 
integration variable [co'—> (coi+co2—co')]. Thus, a solu
tion of (B4) is 

2co£2 
JP(CO,COICO2) = (5k l ,kM(co2)+5k2>kM(coi)) 

u2(o>) 

+^(coi,co2)M(co)M*(coi+co2-co). (B9) 

The coefficient ^4(coi,co2) is not determined by the 
integral equation we have solved. This should not be 
surprising as there are many Lee models, with different 
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number s of V in the NO con t inuum which leads t o the a n d 
same equat ion . T h e coefficient A (coi,co2) m a y be deter
mined b y analyt ica l con t inua t ion from the case of T(coi,co2) = ] £ 
stable V part icles. T h e more complete equa t ions are w ' 

2coO where 
F(co,a>ico2) = [6k ,k lM*(co2)+6k 2 ,kM*(o)1)] 

(2co'Q) (co'-*e) ' 
(Bll) 

^2(co) 

-gT(0)h0i2)\ 
Ltn— o) m— (coi+co2—co) 

—̂i 
+C02 —C0)J 

(2a)iO-2co20)1/2 

r ( « 1 , « 0 = — (F iy iA^f t r ) , (B12) 

and 
1 r00 

x r — r + r~w, 
Leo'—co—ic co'— ( c o i + c o 2 — w ) + i e J 

^(coi)^(co2) 

(2UG)1'2 

iT*(co) = — <0 | / | t f f c r> . 
u(co) 

(B13) 

These are soluble exact ly b y the me thod used b y 
(B10) Amado . W e p u t the result in a slightly different form 

F(co,coico2) = 
2coS2 

u2(u) 
[M*(co1)§k(k2+M*(co2)5k,kl]-

2M*(co1)M*(w2)M(co)lf*(coi+a;2-co) 

gW*(co!+co2-
1 r* 

-co)+— 
4 T T 2 ; , 

-. (B14) 

&^2(co) | M(co') | W(G>I+CO2-CO')&>' 

The denominator in (B14) can be easily put in the This result holds whether or not V is stable because all 
that happens is that the F-particle pole in M(<u) 
migrates to the I I sheet of the function. As C\ already 
encloses this pole, no singularity crosses any contour of 
integration. Hence, for a stable V particle, we have 

form of a contour intetral 

D (o>i+co2) = g2M* (coi+co2—m) 

H ; f M(«)M*(«i+co2-co)&0, (BIS) 
2iri J a A (coi,co2) = 2M* (coi)M* (co2) / — f M (co) 

/ 2wt J cy 

XM*(coi+w2-«)(fo>, (B17) 
where D is the denomina to r function in (B14). Here we 

see t h a t the first t e r m is jus t the residue of the in tegrand 

a t t he poin t co=w. T h u s , we can easily define a new a n d the expression remains valid when the V par t icle 

contour C / t o go a round m when, leading to the lies in the con t inuum. T h e function D (co) has proper t ies 

expression qui te similar to those of C(co); in par t icu lar i t has a pole 

^ in region V. Th is m a y give rise to a zero of £>(co) close 

•D(coi+co2) = — / M(co)M*(coi+co2-co)dco. (B16) t o c o = m + m * , which might show u p as a b u m p in 
2wi J ci' 4̂ v(coi,co2); however, this is no t physical ly interest ing. 


